IPC-SM-780

Component Packaging and Interconnecting with Emphasis on Surface Mounting

ANSI/IPC-SM-780 A guideline developed by IPC

July 1988
Table of Contents

1.0 INTRODUCTION ... 1
 1.1 Scope .. 1
 1.2 Purpose ... 1
 1.3 Classification .. 1
 1.4 Terms and Definitions .. 1
 1.4.1 Lead/Termination Finishes 17
 1.4.2 Component Handling .. 18
 1.4.3 Precleaning Techniques 20
 1.4.4 Axial Leaded ... 20
 1.4.5 Direct Deposition .. 22
 1.4.6 Other Devices ... 23
 1.4.7 Semicondector Package Types 23
 1.4.8 Multileaded Radial Type Components 24
 1.4.9 Small Outline Packages 24
 1.4.10 In-Line Packages .. 26
 1.4.11 Surface Mount Packages 26
 1.4.12 Through-Hole Mounting Technology 26
 1.4.13 General Considerations 26
 1.4.14 Other Considerations 26
 1.4.15 Leadless Chip Carrier 22
 1.4.16 Mixed Mounting Technology 23
 1.4.17 Packaging and Interconnecting Structure 24
 1.4.18 Primary Side .. 25
 1.4.19 Secondary Side ... 25
 1.4.20 Single In-Line Package 26
 1.4.21 Single-Sided Assembly 26
 1.4.22 Supporting Plane ... 27
 1.4.23 Surface Mounting .. 27
 1.4.24 Thermal Expansion Mismatch 27
 1.4.25 Via Hole ... 27
 1.4.26 Component ... 28
 1.4.27 Chip Carrier ... 28
 1.4.28 Castellations ... 28

2.0 REFERENCE DOCUMENTS .. 3
 2.1 Institute for Interconnecting and Packaging Electronic Circuits (IPC) 3
 2.2 Electronic Industries Association (EIA) 3
 2.3 Military .. 3
 2.3.1 Standards ... 3
 2.3.2 Specifications .. 4
 2.4 Federal ... 4
 2.5 American National Standards Institute (ANSI) 4

3.0 COMPONENT PACKAGING AND INTERCONNECTION (CPI) IMPLEMENTATION CONCEPT .. 4
 3.1 System Design Sequence .. 5
 3.1.1 System Requirements 5
 3.1.2 Circuit Requirements 5
 3.1.3 Performance Considerations 6
 3.1.4 Reliability Considerations 6
 3.1.5 System Integration ... 7
 3.2 Interconnect Technology 10
 3.2.1 Package Technology 10
 3.2.2 Through-Hole Mounting Technology 13
 3.2.3 Size Considerations .. 11
 3.2.4 Surface Mount Technology 14
 3.2.5 Intermixed Technology 16
 3.2.6 Other Considerations 17
 3.3 Through-Hole Mounting Technology 13
 3.3.1 Components .. 14
 3.3.2 Interconnect Technology 10
 3.3.3 Size Considerations .. 11
 3.3.4 Surface Mount Technology 14
 3.3.5 Intermixed Technology 16
 3.3.6 Other Considerations 17

4.0 ELECTRONIC COMPONENT TYPES AND INTERCONNECTION DEVICES .. 17
 4.1 General Considerations 17
 4.1.1 Lead/ Termination finishes 17
 4.1.2 Component Handling 18
 4.1.3 Precleaning Techniques 20
 4.2 Discrete Component Types 20
 4.2.1 Axial Leaded .. 20
 4.2.2 Radial Leaded Components 20
 4.2.3 Chip Components (Leaded and Leadless) 20
 4.2.4 Direct Deposition ... 22
 4.2.5 Switches ... 23
 4.2.6 Other Devices .. 23
 4.3 Semiconductor Package Types 23
 4.3.1 Multileaded Radial Type Components 24
 4.3.2 Small Outline Packages 24
 4.3.3 In-Line Packages Configurations 26
 4.3.4 Ribbon Multileaded Component Types (Flat Packs and Quad Packs) 28
 4.3.5 Chip Carriers (Leaded and Leadless) 29
 4.3.6 Grid Arrays .. 36
 4.3.7 Sockets and Connectors 38
 4.3.8 Materials .. 38
 4.3.9 Lead Configuration and Spacing 38
 4.3.10 Socket Types ... 39

8.0 ASSEMBLY PROCESSES

8.1 General Considerations
8.1.1 P&IS Assembly Techniques
8.1.2 Epoxy Attachment
8.1.3 Solderability
8.1.4 Conformal Coating
8.2 Process Flow
8.2.1 Introduction
8.3 Materials
8.3.1 Flux
8.3.2 Solders
8.3.3 Adhesives
8.3.4 Conformal Coating
8.4 Component Preparation
8.4.1 Through Hole Mounting
8.4.2 Straight Through Leads
8.4.3 Perfomed Leads
8.4.4 Surface Mounting Leaded Components
8.4.5 Surface Mounted Leadless Device
8.4.6 Connectors/Sockets
8.5 Solder Placement
8.5.1 Solder Paste Placement
8.5.2 Solder Preforms
8.6 Component Placement
8.6.1 Through Hole Placement
8.6.2 Manual Techniques
8.6.3 Intermixed Technology
8.7 Surface Mounting
8.7.1 Manual Assembly
8.7.2 Automated Assembly
8.8 Chip-on-Board Placement
8.8.1 Low-Volume Equipment
8.8.2 Fully-Integrated Systems
8.9 Component Attachment
8.9.1 Soldering, General
8.9.2 Wave Soldering
8.9.3 Reflow Soldering
8.9.4 Adhesive Bonding
8.9.5 Wire Bonding
8.10 Cleaning
8.10.1 Post-soldering Cleaning
8.10.2 Surface Mount Considerations
8.11 Conformal Coating
8.11.1 Masking
8.11.2 Application
8.11.3 Bake
8.11.4 Handling
8.11.5 Results

9.0 QUALITY ASSURANCE AND TESTING
10.0 MODIFICATION AND REPAIR

10.1 Basic Rules

10.2 Handling Electronic Assemblies

10.2.1 General Guidelines

10.2.2 Handling After Cleaning

10.2.3 Electrostatic Discharge (ESD) Damage Prevention

10.2.4 Electrical Overstress (EOS) Damage Prevention

10.2.5 Warning Labels

10.2.6 EOS/ESD Sensitivity Markings

10.2.7 Protective Methods

10.2.8 EOS/ESD Safe Work Station

10.3 General Modification/Repair Procedures

10.3.1 Cleaning

10.3.2 Identification of Coatings

10.3.3 Coating Removal

10.3.4 Legends and Markings

10.4 P&I Structure Modification/Repair

10.5 P&I Assembly Modification/Repair

10.5.1 Removal and Replacement of Components

10.5.2 Heat Factors

10.5.3 Through-Hole Mounted Components

10.5.4 Surface Mounted Devices

10.5.5 Through-Hole and Surface Mounted Component Removal

10.5.6 Replacement of Surface Mounted Devices

Figures

Figure 3-1 Ideal connective length needed versus number of pins and package type (all dimensions in inches) .. 6

Figure 3-2 Cooling option combinations 8

Figure 3-3 Packaging and assembling integrated circuits (all dimensions in inches) .. 10

Figure 3-4 Semiconductor technology development 11

Figure 3-5 Gate density comparison (all dimensions in inches) .. 12

Figure 3-6 Packaging technology comparisons (all dimensions in inches) .. 12

Figure 3-7 Joint geometries .. 15

Figure 4-1 Interrelated package design factors 18

Figure 4-2 Matrix tray .. 19

Figure 4-3 Tube or magazine packaging 19

Figure 4-4 Bulk packaging 19

Figure 4-5 Pin and hole locating feature 19

Figure 4-6 Axial leaded component 20

Figure 4-7 Radial lead (dipped) capacitor 20

Figure 4-8 Radial lead transistor can 20

Figure 4-9 Flat rectangular chip resistor 21

Figure 4-10 Chip resistor constructions 21

Figure 4-11 Multiple layer ceramic capacitor 22

Figure 4-12 Chip capacitor package 22

Figure 4-13 MELF body outlines 22

Figure 4-14 A chip inductor 22

Figure 4-15 Typical surface mount inductor 23

Figure 4-16 Surface mount cermet trimmer 23

Figure 4-17 “TO” can outline drawing 24

Figure 4-18 SOT-23 package 25

Figure 4-19 SOT-89 package 25

Figure 4-20 SOT-23 comparisons 25

Figure 4-21 SOT-143 dimensions 25

Figure 4-22 16-pin SO and SOL outline 26

Figure 4-23 Proposed JEDEC outline for SOJ packages 27

Figure 4-24 Typical DIP outline 27

Figure 4-25 Typical SIP outline 27

Figure 4-26 Typical QUIP outline 28

Figure 4-27 Typical QUIL outline 28

Figure 4-28 Flatpack outline 28

Figure 4-29 Quad pack configuration 29

Figure 4-30 Typical ribbon leaded transistor 29

Figure 4-31 The 50-mil center JEDEC packages 30

Figure 4-32 Mounting compatibility of JEDEC packages .. 31

Figure 4-33 Features common to the 50-mil center packages 31

Figure 4-34 Type E package variations 32

Figure 4-35A Chip carrier land pattern design 32

Figure 4-35B Leadless ceramic chip carrier attached to a CTE-tailed P&I structure with solder columns 33

Figure 4-36 Square plastic chip carrier 34

Figure 4-37 Rectangular plastic chip carrier 35

Figure 4-38 Double row plastic chip carrier 36

Figure 4-39 Open-via chip carrier (OVCC) 37

Figure 4-40 149-pin array package 37

Figure 4-41 I/O density versus lead count 37

Figure 4-42 Surface mount connector land pattern criteria 39

Figure 4-43 Surface mount connector hold down features 39

Figure 4-44 Surface mounting socket 40

Figure 4-45 Section through socket solder contact 40

Figure 4-46 Screw down cover 41

Figure 4-47 Section through pressure-mounted socket 42

Figure 4-48 Section through through-hole mounting socket contact 42
Figure 8-17 Gull wing lead for SIP type component........... 99
Figure 8-18 Criteria for lead attachment to leadless type A (leaded type B)................................. 99
Figure 8-19 Example of assembly process.................... 100
Figure 8-20 Single-sided boards................................ 102
Figure 8-21 Double-sided/multilayer boards............... 102
Figure 8-22 Components mounted over conductors.......... 103
Figure 8-23 Alignment/boundaries 104
Figure 8-24 Horizontally mounted components 104
Figure 8-25 Clearance.. 104
Figure 8-26 Vertical mounted axial lead components... 105
Figure 8-27 Component types through boards............. 105
Figure 8-28 Individual work station.......................... 106
Figure 8-29 Multiple work station............................ 106
Figure 8-30 Assembly station 106
Figure 8-31 Programmable assembly station............... 106
Figure 8-32 Placement machine considerations 107
Figure 8-33 Panel assembly tooling holes................. 107
Figure 8-34 Positive symbol machine correction 107
Figure 8-35 Chip placement 108
Figure 8-36 Surface mount component types 109
Figure 8-37 Preferred mounting orientations 109
Figure 8-38 Clip carrier alignment 109
Figure 8-39 Typical low-volume COB chip handling systems.......................... 110
Figure 8-40 COB chip handling system block diagram... 111
Figure 8-41 Fully-integrated COB assembly system.... 111
Figure 8-42 Mechanics of thermocompression ball wire bonding .. 116
Figure 8-43 Thermocompression stitch wire bonding...... 117
Figure 8-44 Mechanics of ultrasonic bond wiring........... 118
Figure 8-45 Mechanics of thermosonic wire bonding..... 119
Figure 9-1 Effectiveness of solder wetting of plated-through holes ... 122
Figure 9-2 Edge dip solderability test 122
Figure 9-3 Sketch of specimen holder and timing needle for performing the rotary dip test (time solder rise test) 123
Figure 9-4 Zero defects graphic illustration 125
Figure 9-5 Class 3 Defect Classification Criteria 126
Figure 9-6 Flat ribbon solder joint 129
Figure 9-7 Round or coined leads 130
Figure 9-8 J and V lead solder joints........................ 130
Figure 9-9 Rectangular or square end component solder joints ... 131
Figure 9-10 Cylindrical component solder joint 131
Figure 9-11 Bottom only terminations 132
Figure 9-12 I-beam solder joint 132
Figure 9-13 Leadless chip carriers with castellated terminations—joint geometrical description .. 133
Figure 9-14 Leadless chip carriers with castellated terminations—joint fillet appearance 133
Figure 9-15 Acceptable—handle with clean hands on board edges .. 137
Figure 9-16 Not recommended—hands placed on conductive patterns and components 137
Figure 9-17 Preferred—handle printed board assembly with clean cloth or rubber gloves on printed board edges ... 137
Figure A MIL-STD-129H symbol 140
Figure B EIA RS-471 symbol 140
Figure C No official status 140
Figure D EOS/ESD Association & ITT Research Institute .. 140
Figure 9-17 Preferred—handle printed board assembly with clean cloth or rubber gloves on printed board edges ... 137
Figure 9-16 Not recommended—hands placed on conductive patterns and components 137
Figure 9-15 Acceptable—handle with clean hands on board edges .. 137

Tables

Table 3-1 System Design Sequence 5
Table 3-2 Connectivity Capacity Requirements for DIPs and Small Chip Carriers (Dimensions only in inches) .. 11
Table 3-3 Relative Size of Packaging Techniques 13
Table 3-4 A Comparison of Integrated Circuit Packaging Technologies ... 13
Table 3-5 Joint Geometry Benefits and Problems 15
Table 4-1 Film Resistor Characteristics 23
Table 4-2 Typical Integrated Circuit Packages 24
Table 4-3 JEDEC Ceramic Sizes and Fine Pitch Terminal Counts ... 32
Table 4-4 JEDEC Ceramic Sizes and Fine Pitch Terminal Counts ... 32
Table 5-1 Packaging and Interconnecting Structure Comparison 45
Table 5-2 P&L Structure Selection Considerations 46
Table 5-3 P&L Structure Material Properties 46
Table 6-1 Shock and Vibration Parameters 56
Table 6-2 Table of General COB Design Guidelines 73
Table 7-1 Areas of Concern 74
Table 7-2 Organic Printed Board Processes 75
Table 7-3 Coupon Frequency Recommendations, Design Complexity Class, Coupon Frequency Recommendations 82
1.0 INTRODUCTION

Today’s advanced electronic designs combine miniaturization and weight savings with high performance and low power consumption. To achieve all this, electronic assemblers often use surface mount technology, either alone or in combination with other sophisticated attachment processes. This document examines key issues in advanced packaging techniques. These guidelines provide information on what type of parts are available, the techniques and processes necessary for their proper use, possible advantages, disadvantages or problems, how to start implementation, and where to find additional information. Since no one technology will provide all of the answers, the guidelines establish criteria for intermixing the processes, and define the necessary steps for producing quality electronic equipment. When other specific documents are cited, they should be reviewed for the current requirements. Where appropriate, sections from other IPC documents have been excerpted.

1.1 Scope This document provides guidelines for surface mounting electronic parts, and for intermixing surface and through-the-board mounting techniques. In addition, it describes the types of materials and interconnection substrates necessary for sophisticated electronic assemblies.

1.2 Purpose This document is intended to aid the designer in designing a manufacturable product by providing information on processing and on various types of substrate and joining materials. The substrate physical and electrical characteristics and their compatibility for surface mounting are discussed. Land pattern designs, solder joint configurations, rework, and repair are also covered. Adherence to the guidelines set forth in this document will generally assure adequate reliability for the majority of applications; however, more rigid requirements may be appropriate for more critical applications.

1.3 Classification When appropriate, this guideline will refer to three classes of component mounting complexity which reflect progressive increases in sophistication of tooling, assembly and joining techniques, and cost. These classes are as follows:

A) Simple assembly techniques for through-the-board component mounting;
B) Moderate assembly techniques for surface component mounting;
C) Complex assembly techniques for intermixing through-the-board and surface mounting on the same assembly.

Classification of component mounting complexity should not be confused with the performance classification of end-item use, as referenced in other IPC documents, which refers to Class 1) consumer products, Class 2) general industrial and Class 3) high reliability equipment types.

In addition to component mounting classification, a type designation may be specified for components mounted on one or both sides of the packaging and interconnecting structure:

Type 1 Components mounted on one side only;
Type 2 Components on both sides.

Type 2 is limited to only class B or C assemblies. Class and type designations help establish communication between design, manufacturing and assembly disciplines, as well as identify the precision and processing steps needed to assemble the board.

Any component mounting class and type may be applied to any of the end-product equipment classifications. For example, a consumer product designed to meet Class 1 requirements could have component mounting complexity Class A, B or C with components on either one or both sides of the board (Type 1 or 2).

1.4 Terms and Definitions The definition of terms used herein shall be in accordance with IPC-T-50 and the following: Note: Any definition denoted with an asterisk (*) is a reprint of the definition in IPC-T-50.

1.4.1 *Castellations Recesscd metallized features on the edges of a chip carrier which interconnect conducting surfaces or planes within or on the chip carrier.

1.4.2 *Chip Carrier A low-profile rectangular component package, usually square, whose semiconductor chip cavity or mounting area is a large fraction of the package size and whose external connections are usually on all four sides of the package.

1.4.3 *Coefficient of Thermal Expansion Mismatch (Δ CTE) The difference between the coefficients of thermal expansion of two components, i.e., the difference in linear thermal expansion per unit change in temperature. (This term is not to be confused with Thermal Expansion Mismatch.)